Electrical stimulation promotes nerve growth factor-induced neurite outgrowth and signaling.
نویسندگان
چکیده
BACKGROUND Neurotrophins are important regulators for neural development and regeneration. Nerve growth factor (NGF) therapy has been tested in various models of neural injury and degeneration. However, whether NGF can reach target tissues and maintain effective concentration for a certain period of time remains uncertain. To facilitate neural regeneration, we investigate the possibility of combining NGF and electrical stimulation (ES) in promoting neurite outgrowth, an essential process during neural regeneration. METHODS PC12 cells were seeded on collagen and indium tin oxide (ITO)-coated area on the transparent conductive devices. Cells were then subjected to the combination of ES and NGF treatment. Neurite outgrowth was compared. RESULTS Our findings suggest that ES of 100mV/mm together with NGF provides optimal effect on neurite outgrowth of PC12 cells. ES increases NGF-induced neurite length but reduces neurite branching, indicative of its primary effect on neurite elongation instead of initiation. One mechanism that ES enhances neurite outgrowth is through increasing NGF-induced phosphorylation of ERK1/2 (pERK1/2) and expression of Egr1 gene. ES has previously been demonstrated to increase the activity of protein kinase C (PKC). Our result indicates that activating PKC further increases NGF-induced pERK1/2 and thus neurite outgrowth. CONCLUSION It is likely that ES promotes NGF-induced neurite outgrowth through modulating the activity of ERK1/2. GENERAL SIGNIFICANCE Findings from this study suggest that combining ES and NGF provides a promising strategy for promoting neurite outgrowth.
منابع مشابه
SH2B1beta enhances fibroblast growth factor 1 (FGF1)-induced neurite outgrowth through MEK-ERK1/2-STAT3-Egr1 pathway.
Genetic studies have established the crucial roles of FGF signaling, FGF-induced gene expression and morphogenesis during embryogenesis. In this study, we showed that overexpressing a signaling adaptor protein, SH2B1beta, enhanced FGF1-induced neurite outgrowth in PC12 cells. SH2B1beta has previously been shown to promote nerve growth factor (NGF) and glial cell line-derived neurotrophic factor...
متن کاملNeurotrophin Promotes Neurite Outgrowth by Inhibiting Rif GTPase Activation Downstream of MAPKs and PI3K Signaling
Members of the well-known semaphorin family of proteins can induce both repulsive and attractive signaling in neural network formation and their cytoskeletal effects are mediated in part by small guanosine 5'-triphosphatase (GTPases). The aim of this study was to investigate the cellular role of Rif GTPase in the neurotrophin-induced neurite outgrowth. By using PC12 cells which are known to cea...
متن کاملEtifoxine promotes glial‑derived neurotrophic factor‑induced neurite outgrowth in PC12 cells.
Nerve regeneration and functional recovery are major issues following nerve tissue damage. Etifoxine is currently under investigation as a therapeutic strategy for promoting neuroprotection, accelerating axonal regeneration and modulating inflammation. In the present study, a well‑defined PC12 cell model was used to explore the underlying mechanism of etifoxine‑stimulated neurite outgrowth. Etif...
متن کاملCaMKII-Mediated CREB Phosphorylation Is Involved in Ca2+-Induced BDNF mRNA Transcription and Neurite Outgrowth Promoted by Electrical Stimulation
Electrical stimulation (ES)-triggered up-regulation of brain-derived neurotrophic factor (BDNF) and neurite outgrowth in cultured rat postnatal dorsal root ganglion neurons (DRGNs) is calcium (Ca2+)-dependent. The effects of increased Ca2+ on BDNF up-regulation and neurite outgrowth remain unclear. We showed here that ES increased phosphorylation of the cAMP-response element binding protein (CR...
متن کاملTiam1 as a Signaling Mediator of Nerve Growth Factor-Dependent Neurite Outgrowth
Nerve Growth Factor (NGF)-induced neuronal differentiation requires the activation of members of the Rho family of small GTPases. However, the molecular mechanisms through which NGF regulates cytoskeletal changes and neurite outgrowth are not totally understood. In this work, we identify the Rac1-specific guanine exchange factor (GEF) Tiam1 as a novel mediator of NGF/TrkA-dependent neurite elon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochimica et biophysica acta
دوره 1830 8 شماره
صفحات -
تاریخ انتشار 2013